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Abstract—Graph theoretical analysis has been applied to
both structural and functional brain connectivity networks and
has helped researchers conceive the effects of neurologicaldan
neuropsychiatric diseases including Alzhemier and Schizophre-
nia. However, existing graph theoretical approaches to brain
connectivity networks simply assume that temporal correlations
between brain regions are stable during the entire timeseries
under consideration, and only focus on high-level network topo-
logical characteristics such as degree distribution. To advance
the understanding of brain connectivity networks at a fine
granularity, we propose a new method that can help discover
connectivity-oriented insights from a time series of brain connec-
tivity networks. In particular, our method is capable of identifying
(1) strong correlations, which are represented as frequent edg
in brain connectivity networks, for each individual subject, and
(2) frequent substructures, which are connected components
appearing frequently in brain connectivity networks, for a group
of subjects. We apply the method to a data set of 38 subjects
that were involved in a study of early life stress on depression
development. Our findings have been echoed by the domain
experts in terms of their clinical implications.

Index Terms—brain connectivity, computational neuroscience,
graph theory, graph mining, frequent itemset mining

I. INTRODUCTION

to discover fine-grained knowledge that exists at corrtatpr
edge in brain connectivity network) level instead of netkor
level. For example, strong correlations in neural netwqgok o
erations, which are of high interest for neuroscientisés\not

be identified by using existing approaches. In this paper, we
propose a new brain network analysis method that can help dis
cover connectivity-oriented insights from a time seriebiafin
connectivity networks. We only consider strong edges that
appear in the brain network repeatedly over time. Moreover,
we use frequent edgesets mining to find frequent substestur
commonly exist in a patient group. Through analysis of chihi
psychiatrists, we discover that these common substrigture
exhibit functional modules of brain networks. In a nutshe
propose a general framework for brain connectivity analysi
through frequent edgeset/itemset mining to achieve patter
recognition. And we tested our methods on real life datasets
to study the effects of early life stress (ELS) on depression
development.

ELS includes a wide range of stressors occurring before
sexual maturation such as physical and sexual abuse, heglec
and malnourishment. ELS can have profound long-term effect

Graph theoretical analyses of both structural and funation on the development of the central nervous system and its

human brain networks have been rapidly applied to the unregulation of basic psychology function. ELS can lead to
derstanding of human brain network organizations [1] [3] [3 later cognitive impairment. And, ELS is widely documented t
Previous studies have found that both structural and fonati  increase risk for depression [13]. The neurobiologicalsesn
brain networks resemble features of complex networks ssch ajuences of stress exposure also involves dysfunction ahheu
small-world topology [4] [5], scale-free degree distrilout [6], networks mediating cognitive and affective processes.[14]
highly connected hubs with high degree or high centralify [7 Stresses during infancy may result in deficits in commuidoat
and modularity [8] [9]. However, most of the previous stwdie between brain cells, memory loss and impaired cognitive
are mainly focused on understanding the human brain nesworlabilities that manifest later in life, such as the developtreed
through measuring network characteristics on a small scal@epression [15]. Both ELS and depression might be conceived
Few studies have been done to show the correlation betweers a disorder of connectivity between components of brain
a subject’s brain connectome and her clinical conditiorst-N networks. Presumably, ELS has a high risk of developing
work characteristics such as mean clustering coefficieath p depression in later life, and functional brain connedfivit
length, degree distributions, and robustness have beehtase network should show some distinct topological charadiess
capture the differences between diseased subjects artiyhealassociated with ELS. However, under certain circumstareces
control subjects in Alzheimer [10] and Schizophrenia [11].subject can be resilient to the impact of ELS on depressien de

However, to simplify the analysis, existing graph theamati
approaches (e.g., [12]) to brain connectivity networksehiawt
paid attention to the stability of correlations, assumimagt the

velopment. Even though, a depression resilient subjectiinb
connectome might show noticeable feature differences from
depressed subjects or healthy subjects. In this work, wedes

temporal correlations between brain regions are stablesacr this hypothesis by constructing and comparing functiomairb
the entire timeseries. Moreover, those approaches arebfet a network topologies among different subject groups derived



from resting-state functional MRI (fMRI) timeseries. For example, the small-world phenomenon (i.e. nodes are
The rest of the paper is organized into four sections. In théocally clustered and large networks can be traversed, on
next section, we discuss the background of the study: a} funaverage, in a small number of steps) exists in both human
tional and structural brain connectivity and graph thdoatt brain networks [18] and social networks [19]. For a brain
analysis; b) frequent itemset mining and graph minging. Imetwork, a number of network metrics can be measured to
section Ill, we present our methods from converting subject analyze its network properties including 1) node degregreaie
fMRI images to functional brain connectivity graphs, to min distribution and assortativity; 2) clustering coefficieand
ing for common substructures and inducing signature graphsnotifs; 3) path length and efficiency; 4) connection density
Results and their clinical implications are discussed tise  or cost; 5) hubs centrality and robustness; and 6) modylarit
IV. Finally, we conclude with the importance of devloping a Such analyses not only advance our understanding of human
such general framework for brain connectivity analysis @sd brain organizations, but also promote the study of compgarin
potential impacts in the future. brain networks between diseased patients and healthycssibje

to provide more accurate clinical decision support [10]]{11
1. RELATED WORK

A. Brain connectivity and graph theory B. Frequent itemset mining and graph mining

There are two types of brain connectivity networks: struc- Mining frequent items to find association rules has been

tural network and functional network [16] [1] [5]. Struceir €Xtensively studied since the work by Agravet al. [20].
networks represent anatomical and physiological assoniat Assouanon_ rules can be used to d|scoverthe_shoppmgrpatte
among different brain elements. This can be achieved bjfom massive amounts of sales data, which can then be
examining the white matter connections among gray matte/Se€d as the basis of decision making in various activities
regions from diffusion tensor image (DTI) data. FunctionalSUCh as advertising, product placement, etc. An assoiatio
connectivity indicates the statistical functional asation or  ul€, such a{onion, hamburger, meat} — {potato, chip}

dependency among individual neurons or brain regions. Fundémonstrates the customer buying behavior. Frequent ets o
tional brain networks can be obtained through measurin@rOdUCtS in sales transaction data describe how often itgms

temporal correlations between spatially remote neurahtsve Purchased together. , .
based on functional magnetic resonance imaging (fMRI-ele ~ Formally, letl = {i, iz, ....in } be a set of items. LeD

troencephalography (EEG), magnetoencephalography (MEG?? a collection of transgctigns, where each_ transacfion
or multielectrode array (MEG) data. tid, I;;4) has a transaction itid and a set of itemg,;;; C I.

In this paper, we focus on functional brain connectivity 1€ support of a set () in D is the number of transactions
networks obtained from fMRI data. fMRI has been widely that contains item seX. A set X is called frequent if its
used to detect the changes of regional brain activity tHioug SUPPOrt is no less than a giveminimal suppor(minsup. The
their effects on blood flow and blood oxygen consumptions€ative minimal support.,i,s., is defined as
As a neuronal activity requires glucose and oxygen from the
blood stream, it will result in a noticeable change of thealoc
ratio of oxygenation and generate the markers of blood oxyindicating the probability of seX' occurring in all D. The
gen level-dependent (BOLD) signals for fMRI. The temporalproblem of frequent itemset mining is to find &l in
correlations between defined regions of interest (ROIs) can
then be calculated by measuring the linear dependence of
the signal strengths between two ROIs. In this study, we us&o go one step further, we can then look for association rules
the Pearson product-moment correlation coefficient (PM@C) An association rule is an implication o — Y, where
measure the strength of connection between two ROIs. OtheX C I,Y C I, and X N Y = (. We say that an association
correlation measurement approaches including lag ctioela rule X — Y hasconfidence, if ¢% of transactions inD
mutual information, and peak correlation can also be usethat containX also containy’. For the purpose of this study,
to measure the dependency between two variables from tim&e only mine frequent itemsets.
series [17]. The search space of frequent itemset mining on a set of

Using the matrix of correlation coefficients, an undirectedunique itemsI contains exactly2!!! different sets. IfI is
graph G = (V,E) of degreen = |G| (i.e. number of large enough, it is computationally hard to find the supports
vertices/nodes), can be defined to represent the functionaf all sets over a databage. Therefore, we often just look
brain connectivity network, where a node/vertex of the grap for closed itemsets and maximal itemsets. A frequent itétmse
represents a ROl or a neuron and an edge representsisacalledclosedif no superset has the same support. And a
connection/correlation between two nodes and thus inekcat frequent itemset is callechaximalif no superset is frequent
the functional connectivity. Such an abstraction eases th@.e., exceeding the minimum support).
application of Graph theory in quantitative investigatmfrthe In graph theoretical analysis, we are often interested in
topological organization of brain networks. Recent statliave  finding frequent subgraphs. For example, in [21], biolag&se
found that both structural and functional brain connettivi interested in identifying functional modules and evolo#dly
networks exhibit properties similar to other complex netkgo  conserved subnetworks from biological networks. Frequent

T'minsup = mznsup/|D|,

F(D,minsup) = {X C I|support(X, D) > minsup}.



subgraph mining is similar to frequent itemset mining. @ive using FSL, and noise from white matter voxels was regressed
a graph datasetD = {Gy,G,...,Gr}, support(g) is the  out of the time courses from gray matter voxels.
number of graphs (i) in which g is a subgraph. The problem Certain neural regions are more important than others for
of frequent subgraph mining is to find any subgraptihat has emotion processing and emotion regulation. Many studies in
support(g) > minsup. One of the key differences between neuroscience field have consistently reported such findings
frequent subgraph mining and frequent itemset mining is tamong healthy individuals, individuals exposed to ELS, and
identify isomorphism in graphs. However, in our study, we do individuals with MDD [27] [28] [29]. Therefore, we selected
no consider isomorphic subgraphs, since each ROl is unjiquell well-studied ROIs (see Table 1), which have emotion
labeled. processing and emotion regulation impacts on both healttly a
In recent years, solutions on frequent itemset mining (e.gdepressed populations [27] [30] [31] [28], to form an emotio
apriori [20], eclat [22], and fp-growth [23], etc.) and fregnt  regulation network.
subgraph mining (e.g., AGM [24], FSG [25], and gSpan [26],

TABLE |
etC.) have been well explored. SELECTEDROIS IN THE EMOTION REGULATION NETWORK
IIl. METHODS Region of Interest [ Description
. . . IHPC | Left hippocampus

A. Subject grouping, fMRI data acquiring and data prepro- rHPC | Right hippocampus
cessing rAMY | Right amygdala

IAMY | left amygdala

In total 38 subjects have been scanned, and all the sub- 1DFC Rl%ha dorslall Iaterlal prfefrontlal cortex

jects are female. Each individual's ELS and depression were D':r(TZ Iﬁz?ght ?ﬁ;?arﬁttjesra prefrontal cortex
characterized by structured interview for Clinical Disersl IT | Left thalamus
(SCID) and Early Trauma Inventory (ETI) with trained cliaic IC | Left caudate

rC | Right caudate

staff. In addm_on, a!l participants completed the Ch|ldtjo SACC | Subgenual anterior cingulate cortex
Trauma Questionnaire (CTQ) and Hamilton Depression Scale rACC | Rostral anterior cingulate cortex
(Ham-D) to further characterize their ELS histories andeuoir dA(;(é aords_alI ant$riort clingutlate cortex

. . . . m edial prerrontal cortex
major depressive dlso_rders (MDD). Current or past dlagsmose vmFC | Ventral medial prefrontal cortex
of MDD were determined based on the SCID; ELS history IVEC | Left ventral lateral prefrontal cortex
was determined by the ETI and CTQ. 38 subjects were split erCI S?gm Veftﬂf{il |<?ter<’n}| prefrontal cortex
. . . ra Ignt anterior insula
mto_ three_ subj_ect groups: 1) a _healthy control group (13 lal | Left anterior insula
subjects), in which subjects had neither ELS nor obsemvatfo rpl | Right posterior insula
depression; 2) a resilient group (9 subjects), in which extij Ipl | Left posterior insula

had ELS but did not develop depression symptoms; and 3)
a ELS-depression group (16 subjects), in which subjects had Time courses were first extracted fradmm sphere ROIs
ELS and were diagnosed with depression. centered at the coordinates of each node for each individual
Image acquisition was performed using a 3.0 T Siemen&nd then averaged across voxels within an ROI, which results
Magnetom Trio modality with a Siemens transmit-receivechea in @21 x 210 (ROI x T'Ps) matrix for each individual. In the
coil. Anatomic images were acquired atx 1 x 1 mm? matrix, each column is an ROI, each row is a time point (TP),
resolution with an MPRAGE sequence as 1F6nm thick  and the value of each cell indicates the activity strengtla of
slices with the following parameters?OV 224 x 256 mm,  Specific ROI at a specific time point.
TR 2600 ms, TE 3.02 ms, FA 8°. Functional images were
acquired with a z-saga sequence 42 to minimize artifacten th
medial prefrontal and orbitofrontal cortex due to sinusities. In this study, we use the Pearson product-moment corre-
Z-saga images were acquired3at x 3.4 x 4 mm? resolution  lation coefficient (PMCC) of the time courses to measure the

in 20 4 mm thick axial slices with the following parameters: linear dependency (correlation) between two ROIs. The PMCC
FOV 220 x 200 mm, TR 2020 ms, TE1/TE2 30/66 ms, s calculated based on two variables’ covariance, defined as
FA 90°. In each session, 210 planar images depicting BOLD
responses were acquired Witlraw 202 Tlg, totalp durgtion pxy = E[(X = EIX])(Y — E[X])]/oxoy (1)
7.2 minutes. During the resting-state scan, participardeew where E stands for the mathematical expectation, ang
instructed to lie passively in the scanner and to refraimfro andoy are the standard deviations &f andY’, respectively.
thinking about anything specific. The product of PMMC yields a value betweenl and +1
Images first underwent slice timing and motion correctioninclusive (i.e.,—1 < px y < +1). A value of +1 indicates a
(i.e., corrected for head movement by realignment and segre perfect positive linear correlation betweghandY while —1
sion), and low frequency Fourier bandpa89)(9 — 0.08H z) indicates a perfect negative linear correlation. By catng
filtering, then were spatially smoothed to Ganm FWHM the PMCC for every pair of ROIs based on the extracted brain
Gaussian filter, and finally were normalized to the MNI 452activity time courses, we generate a correlation maix@21)
template brain. White and grey matter voxels were segmentefdr the 21 ROIs. The matrix is symmetric and the values in

B. Constructing functional brain connectivity graphs



the main diagonal are not interested as those values iedicat Figure 1 shows an example brain connectivity graph using
the correlation of an ROI to itself. the selected 21 ROIs witllensity = 0.37.

C. Mining for strong-edges graphs

Visualizing brain networks through functional brain coone
tivity graphs is very helpful for neuroscientists to undensl
and analyze the effects of diseases [10] [11]. Howevergether
are two limitations in the existing approaches. First, gatesl
connectivity graphs usually are very complex, full of cocmne
tions and hard to make comparisons for either between-group
subjects or in-group subjects (e.g., see Figure 2). Secand,
correlation is decided over the entire timeseries, whicuames
that temporal relations between brain regions are quitelesta
over time. However, it is likely that the assumption is notetr
[32].

To help better understand functional brain networks, we
propose a method that can generate strong-edges graphs from
basic functional brain connectivity graphs. The methodsabn
ers the the frequency with which connections between brain
regions occur over time and regards the connections thatr occ
frequently as “strong” and important to the function of the
overall network. By considering only strong connectiore t
method can effectively prune the network and reveal pattern
Fig. 1. A sample functional brain connectivity graph thatidepa subject’s of Com_mumcatlon across distributed brain regions thamneefi
emotion regulation network. a functional neural network.

We define the strength of an edge (i.e., a correlation between

We can then derive a binary adjacency matrices from thévo ROIs), denoted byS., ; (1 < ¢ < [ROI|, 1 < j <
correlation matrices. Two ROIs will be regarded as adjacent?OI|,andi # j), as the frequency of its appearance across
to each other and connected via an edge in the connectivill the brain connectivity graphs generated from the scah an
graph, if the two ROIs are highly correlated (either positiv USe it to derive strong edges. The scan on each individull too
or negative). For an adjacency matrix, the value of its eatri /-2 minutes and has 210 time points (TP). We divide the 210
is either 1 or 0, where 1 indicates the existence of a conneclPs into 41 groups, where each group contains ten TPs. For

"
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tion/edge and 0 indicates nonexistence. Formally, data smoothing purpose, two consecutive groups have five TPs
el in common. That is,
A(i, ) = {0 i |pij| -7’ ) TPG,=  [TP\,TP,,.., TPy,
’ TPGy=  [TPs,TP;, ..., TP,

whereA(i, j) stands for the value of entfy, 5] in an adjacency
matrix, p;; is the correlation value in the corresponding
correlation matrix, andl’ is the given threshold. From an TPGyu = [TPs01,T P2, ... T Poro].
adjacency matrix we can easily construct an undirectedhgrapIn general
of brain connectivity network. Each node/vertex in the $rap ’
represents an ROl and two ROls are directly connected if thei  T'PGp, = [T Pun—1)xstept1s -3 T Plan—1)xsteptnls 4)
entry value is 1 in the matrix.

The decision of the value of" is based on the density
of a graph. The graph density is defined as the number
edges divided by the total number of possible edges. For a‘q(

H n
undirected grapit; = (V. F) of degreen = |G, We create a correlation matrix and its connectivity graph
[E(G)] 3 from each grou’PG,,,. The strength of an edgg ; for one
n(n—1)/2° subject is defined as
Aligned with previous research [11], the gragbnsity is o
set in the range0.37,0.50]. A graph tends to be fragmented Se,; = leijl/|[TPG], 5)
if density is smaller than 0.37, and it may not representwherele; ;| is the number of graphs that contain edge and
a biological system ifdensity is larger than 0.50. Clearly, |TPG]| is the total number of graphs (i.e., 41 in our study).
a lower T' incurs more correlations and thus more edges, Strong edges are those edges whose strengths are no smalle
resulting a higherlensity of the graph. than the predefined minimal suppo$t,insup (Sminsup €

where T PG, is the m-th group, TP; is the i-th TP, and
JfTPG\ is total number of groups. Apparently7’ PG| =
|TP| — n)/step| + 1. In this study, we sektep = 5 and
= 10.

density =



(a) Subject 2031 from the control group

(b) Subject 2034 from the resilient group (c) Subject 2044 from the depressed group

Fig. 2. Functional brain connectivity graphs of three satgierandomly picked from each clinical group.

[0,1]). Figure 3 shows a strong-edges graph for subject 2031). Frequent edgeset mining and mining for common substruc-

where density = 0.42 and Syinsup = 52%. Compared to
the original connectivity graph of the same subject in Fegur

tures
We use frequent itemset mining technique to extract a set

2(a), the strong-edges graph focuses on edges more fréguens yoy supstructures from the individuals’ brain conneitiv

observed within operation of the network and therefore in
creases interpretability by decreasing the total numberdges

‘graphs of a subject group. In the context of frequent edgeset
mining, given a grapliy = (V, E') of degreen, let D be a col-

considgreq. For example, we can immediately see a clugteringqion of transactions, where each transactior: (tid, Eyiq)
effect in Figure 3. Nodes IT, 1T, vmFC, mFC, and ral form ..« 4 transaction idid and a set of edgeg;,u C E. The
one cluster, and nodes lal, dACC, rC, IHPC, rHPC, rpl, a”dsupportof a setX C D, denoted bysupport(X, D), is the

rDFC form the other cluster. The two clusters are connecteql \\her of the transactions that contain edgesen set X is
through ral and lal.

Fig. 3.

A sample of a graph that contains only strong edgesufojest 2031.

called frequentif its support is no less than a giveaninimal
support (minsup). We define therelative minimal support
(Pminsup) 8S Tminsup = minsup/|D| and use it to indicate
the frequency of seX occurred in all transactions. We also
restrict the size ofX to be larger thaminsize. The problem

of frequent edgeset mining is to find all the subs&tawith
large enough support and size, that is, to compute the set
{X C DJsupport(X, D) > minsup,|X| > minsize}.

In our study, we define a transacti@has a set of unique
edges from each time point group graph of a subject. Aligned
with our previous settings (i.@tep = 5 andn = 10), 210 time
points are split into 41 groups. For each group, we can génera
a connectivity graph; and we consider each graph of the time
point group as a transaction. Using frequent edgeset mining
we can extract frequent substructures (edgesets) of acsubje
group. Figure 4 shows four different substructures exdgct
from the healthy control group (i.e. 13 subjects, a8 41 =
533 transactions) with the following settingensity = 0.50,
Tminsup = 15%, andminsize = 5.

IV. RESULTS ANDDISCUSSION

The purpose of this study is to explore new approaches
to enriching the understanding of human brain networks and
discovering insights from them. Traditional graph theicsdt
approaches (e.g., [12]) to analyzing fMRI data suffer from a
assuming temporal stability across the entire timesenes a
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Fig. 4. Samples of frequent substructures extracted fronh#adthy control group.

b) neglecting to differentiate between commonly used edges Moreover, some literatures suggested that the densities of
and infrequently used ones in neural network operation. Irthe brain connectivity networks varied among subjects,ethe
contrast, our approaches focus on strong connections eetwefore, the brain network metrics should consider all reabtena
well-defined ROIs. The immediate result is that we are ablalensities, from 0.37 to 0.50 (i.e. for example, take the mean
to generate strong-edges graphs for each subject and ma&Enetwork metrics produced at a range of densities from 0.37
connectivity graphs much more straightforward, so that keyo 0.50 in 0.01 increments) [11]. In our study, we choose to
characteristics of a network can be easily observed. As showuse a higher density value (i.e. 0.50 at most). As mentioned
in Figure 3, it is clear that two clusters are formed, andin Section llI-B, the threshold” is determined by the target
connected through nodes ral and lal. However, this observat density, a higher density value results in a lowEy and

is difficult to draw from the original brain connectivity gga  consequently creates more edges in the graph. Also, we can
for the same subject in Figure 2(a). Moreover, the strongmake the conclusion that if an edge exists in a graph genkrate
edges graphs help infer the stability information of a sct§e using a higherT value, the edge should still exist, if we
functional brain networks over time. In this study, 210 timechose a lowefl’ value (i.e. higher density) and use the same
points are grouped into 41 groups and a connectivity grapleorrelation coefficient matrix. In summary, for the purpade

is generated for each group, which is equivalent to taking anining for frequent edgesets, a high density value preserve
snapshot of the functional brain network of a subject at amjiv all the necessary edges, and prevents information loss.
frequency along the time course. The frequency with which an  Although the methods investigated were only tested on
edge appears across the snapshots implies the importagce (ifunctional brain connectivity networks, they should beoals
strength) of the edge for the overall operation of the neltwor applicable on structural networks, because of their shitiga

We use the frequent edgeset mining techniques to discovéd terms of network characteristics.
common patterns/substructures from brain connectiviaplgs
of all the subjects within the same clinical group. As shown i
Figure 4, frequent substructures are extracted from thithyea
control group, withdensity = 0.50, Tpinsup = 15%, and
minsize = 5.

V. CONCLUSION

In this paper, we proposed a new methodology in graph the-
Successful emotion regulation is a multidimensional ancPretical analyses of the brain connectivity networks. Carap
temporally unfolding process. Neurally, emotion regwiati ing to traditional approaches, our methods do not assume tem

has been found to recruit a diverse array of neural regiongoral Stablllty of the brain activities over the entire t'H;BeieS,
that mediate cognitive control, conflict monitoring, memor and we recognize the differences between strong edges and
emotion and saliency processing, and interoceptive awagen infrequent edges. Moreover, we discover common subgraph
and integration. It is interesting to note that when minings f ~ Ppatterns that exist in subjects of the same clinical comwti
quent substructures, the control group demonstrated a comm By not assuming static functional connectivity, our method
substructure consisting of the rostral ACC, subgenual Accallows improved identification of brain states differetitig
ventral medial PFC, and medial PFC, as these regions hainical populations.”

known direct anatomical pathways connecting them to emotio  We can further extend this current study to develop a accu-
generation regions (e.g., amygdala and hippocampus). Thate classification algorithm to identify potential diseasub-
finding that these regions form a common substructure amonjgcts or a subject’s potential neurological flaws. One pissi
healthy individuals suggests that these tightly linkedewdct improvement is to rank each frequent substructure acagrdin
in concert to bias information processing in emotion geti@ma  to its neurological effects on brain networks, and discawd |
regions. ranking patterns as outliers to eliminate undesirableaois
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